Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(4): e15968, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36876653

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) can establish a long-lasting microglia-like progeny in the central nervous system of properly myeloablated hosts. We exploited this approach to treat the severe CLN1 neurodegenerative disorder, which is the most aggressive form of neuronal ceroid lipofuscinoses due to palmitoyl-protein thioesterase-1 (PPT1) deficiency. We here provide the first evidence that (i) transplantation of wild-type HSPCs exerts partial but long-lasting mitigation of CLN1 symptoms; (ii) transplantation of HSPCs over-expressing hPPT1 by lentiviral gene transfer enhances the therapeutic benefit of HSPCs transplant, with first demonstration of such a dose-effect benefit for a purely neurodegenerative condition like CLN1 disease; (iii) transplantation of hPPT1 over-expressing HSPCs by a novel intracerebroventricular (ICV) approach is sufficient to transiently ameliorate CLN1-symptoms in the absence of hematopoietic tissue engraftment of the transduced cells; and (iv) combinatorial transplantation of transduced HSPCs intravenously and ICV results in a robust therapeutic benefit, particularly on symptomatic animals. Overall, these findings provide first evidence of efficacy and feasibility of this novel approach to treat CLN1 disease and possibly other neurodegenerative conditions, paving the way for its future clinical application.


Assuntos
Encéfalo , Sistema Nervoso Central , Animais , Camundongos , Modelos Animais de Doenças , Terapia Genética , Células-Tronco Hematopoéticas
2.
J Vis Exp ; (153)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31814622

RESUMO

Recent advances in viral vector and nanomaterial sciences have opened the way for new cutting-edge approaches to investigate or manipulate the central nervous system (CNS). However, further optimization of these technologies would benefit from methods allowing rapid and streamline determination of the extent of CNS and cell-specific targeting upon administration of viral vectors or nanoparticles in the body. Here, we present a protocol that takes advantage of the high throughput and multiplexing capabilities of flow cytometry to allow a straightforward quantification of different cell subtypes isolated from mouse brain or spinal cord, namely microglia/macrophages, lymphocytes, astrocytes, oligodendrocytes, neurons and endothelial cells. We apply this approach to highlight critical differences between two tissue homogenization methods in terms of cell yield, viability and composition. This could instruct the user to choose the best method depending on the cell type(s) of interest and the specific application. This method is not suited for analysis of anatomical distribution, since the tissue is homogenized to generate a single-cell suspension. However, it allows to work with viable cells and it can be combined with cell-sorting, opening the way for several applications that could expand the repertoire of tools in the hands of the neuroscientist, ranging from establishment of primary cultures derived from pure cell populations, to gene-expression analyses and biochemical or functional assays on well-defined cell subtypes in the context of neurodegenerative diseases, upon pharmacological treatment or gene therapy.


Assuntos
Encéfalo/citologia , Separação Celular/métodos , Citometria de Fluxo/métodos , Medula Espinal/citologia , Animais , Astrócitos , Células Cultivadas , Células Endoteliais , Feminino , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Neurônios , Oligodendroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...